RGame

Introduction

[v In this project, a Python game engine
® @ "\/‘\. ‘ ® . was created using tkinter (Python’s
. built-in GUI system). This project

provides a framework for writing

smaller games and simulations in
’ . ‘ Python. It runs 3 threads, one to
maintain the physics loop, anotherto
maintain the graphics loop and the

' ” main thread that handles the GUI
| . . and invocations made by the

graphics loop. The full project description is available at https://gyularabai.com/p_3704-

rgame-python-game-engine.html.

How to Run?

The first step is to download RGamelib.py from either my website
(https://gyularabai.com/p_3704-rgame-python-game-engine.html) or the GitHub
(https://github.com/mrgyularabai/RGame). Strictly speaking, that is all that is required.
Alternatively, one can download the entire GitHub project and run it from the source.

‘rgame’ on PyPl is currently under maintenance (until my email is verified). A sample
MainScript.py and Script.py is also provided on the GitHub.

Architecture

Game Engine

The game engine has four main aspects to it: the RG_MainScript, the RG_Script-s, the
Physics infrastructure, and the Rendering infrastructure.

MainScript

This is the main central class of the entire project. All other classes are contained by it,
and all the RG_ classes require it. The main script serves three central functions. Firstly,
it provides a ‘Before’ function, which is called before RGame is initialized. Secondly, it
sets up and initializes RGame on its construction. Lastly, it provides a place to put code,
which is not organized into its own RG_Script-s.

RGame by Gyula Rabai

https://gyularabai.com/p_3704-rgame-python-game-engine.html
https://gyularabai.com/p_3704-rgame-python-game-engine.html
https://gyularabai.com/p_3704-rgame-python-game-engine.html
https://github.com/mrgyularabai/RGame

Scripts

These are equivalent to what other systems would call Game Objects. Upon creation,
they all subscribe to a rendering loop with an appearance that gets updated after every
call of the Render function. They also subscribe to a Physics loop, which runs on a
separate thread to the rendering code and provides calls at relatively fixed intervals (it
also measures the time between calls and provides it as an argument, deltaTime). The
last key method that most RG_Scripts override is the Start method, which is called upon
the creation of the script.

By creating such scripts, one can easily create instantiable game objects with custom
behaviour.
Main Physics

Currently, RG_MainPhysics has two underlying implementations, one where a Python
loop calls the PhysicsTick of all the subscribed scripts and one where a C++ timed loop
does so if the DLL is available. The main purpose of this class is to provide all the scripts
with regular physics updates every MainPhysics.Interval as is specified.

Main Window

This class contains most of the Ul related code. This includes binding keys to events,
setting up the main rendering loop (on a separate thread to the tkinter mainloop onto
which invocations are made), and also parametrizing and setting up the tkinter window.

Sample Programs

There are two main sample

Time

programs that can be obtained for level 4 ning.7.87
Ammo: E}aﬁ Fire Rate: 2

RGame (amongst others like the
gravity simulation). The first is the
default screen shown in the . O
introduction section. This
demonstrates most of the features

available in RGame (and is promptly
updated when a new feature is
added). The second is the Zombie
Game, which is a retro-style shooter

with levels and different guns available. This one uses less features, but it demonstrates
how to implement more complex game logic.

RGame by Gyula Rabai

Motivation

This project was mainly motivated by the fact that | wanted a way to have Unity’s easy
object-oriented scripting style combined with Python’s simple syntax. | wanted to have a
simple system where | do not have to worry about the complex work involved in setting
up graphics. Therefore, | set out on a journey to create a framework where | could set up
simulations and games as easily as | wanted.

Development

Most of this section will be referencing code from the RGame-Legacy
(https://github.com/mrgyularabai/RGame-Legacy) GitHub repo. This is where | uploaded
all the previous versions of RGame neatly stored in versioned folders. This was before |
discovered the concept of SVN and version control (yet another testament to how far this
project has come).

Although | originally had one file for RGame in V0.000, this file is lost somewhere in the
depths of my SVN server. What | do remember however is that | quickly realized that a
game engine is not a quick, one-off, 100-lined script. Therefore, | took my file apart into
what became V0.200.

class Main:
N This is where the first few ideas formed about
per init (se1f): rendering being on a separate thread, the existence
il Of 2 main class and a rendering manager, but
pass

perhaps the key innovation was the Vector2 class,

def Start(name):

T = TSR R which contained the first few operations of what

try:
nderMan = RenderingManager (window)

S would be many more later on.

print("Failed to Start rendering.")

Ty A key feature of Maths in RGame is that it has a

pass

separate velocity class that derives from the vector

class. This feature was kept as it makes
conceptualizing what vectors represent easier.

By V0.400, the project had already gained a logo. | had so many new classes that | learnt
how to organize my files into modules using the __init__.py files to hide the game engine
into a folder so that it does not interfere with the game code. At this point, | started to use
Decimal instead of the built-in float class, thinking that it would be an advantage to be
more accurate. Furthermore, | also created separate a physics manager, and | realized
that handling a tkinter window was big enough of a task that it needed a separate class.

By this point, the vector class had gained all the classic features of the linear algebra
libraries | often implement in such project including the very useful SetLength function.
All classes also acquired the RG_ prefix to make distinguishing between game engine
classes and game classes easier.

RGame by Gyula Rabai

https://github.com/mrgyularabai/RGame-Legacy

Another notable feature of this version is the beginnings of an SDL module (standard
library), which for the moment only contained a create ball function.

Rather ironically, the same approach to running the game was taken as is done in the
latest version of RGame where the MainScript is passed into a ‘run’ function. For all the
versions of RGame discussed in this section,

the main way a project is to be run is for the
working directory to be setto where the mainfile
is, and running either _RG_Debug.py or
_RG_Run.pyw (one creates a console and the
other does not.)

The beginnings of a title-screen can also be
seen with ablack ballbouncing around on a grey

back-ground.

In the following versions, | expanded the functionality of the SDL, and | kept on changing
the way the main scripts are run. The full version history will not be documented, but
notably between 0.400 and 0.950, the graphics system did improve with the new title
screen demonstrating the stark difference. However, the key problem | encountered was

[e - % 1 not knowing when to update the
appearances of the RG_Scripts,
@ since it could be either the
o responsibility of the rendering
@ manager or the RG_Script’s

R ° P Render method.

The physics also greatly improved,
hd o o | Wwith the new introduction of the
C++ DLLs for timing, and the
¢ @ ® movement was actually

calculated in the RG_Script’s Tick
function instead of the PhysicsTick using a velocity property. Itis also very easy to handle
collisions with the screen’s edge given that a Bounce function exists.

RGame by Gyula Rabai

From V0.950 to V1.000, the main concern was identifying the best approach to graphics.
This was eventually found to be making each script have one appearance. Then, the

rendering manager first invokes the [- o x
scripts Render method and then updates ‘ ® .. ®

that appearance. This enabled the tkinter O ® 0
items to have their properties change in ® P 8 Q
real-time, demonstrated by the colour ® e)
changing balls in the new title screen. &Dj d

From here on, the current version had two @ ® ¢ .Q

main issues. The first was portability, @ Q. O

because for the Game Development Club . O

that | was trying to set up, | wanted to use this game engine to teach people how to code
and desigh games. However, the DLLs, were not always present when because of school
system restrictions. The second issue was that there were not enough features to make
enjoyable games (for example text labels were missing.)

To fix these issues, | created the current version of RGame after all the features were
added V1 through V1.4. The solution to the missing DLLs was to implement Python
equivalents to the DLLs, and switch when they were not available. To further increase
portability, | added a script that compiles all the modules into one large file using import
headers in each file. This means all of RGame can now be used by just downloading one
file (RGamelLib.py).

This also came with reconfiguring the main executable file to be the file that contains the
MainScriptinstead of the previous _RG_Run.py. This was solved with a function that takes
in a MainScript and runs it, instead of the main script running itself on creation.

Conclusion

To conclude, this project was more than just a road-map to developing a great game
engine. This was a project to make something that both | and others could use, in arobust,
yet intuitive way!

RGame by Gyula Rabai

