
Inference Engine by Gyula Rábai

LLM Inference Engine

Introduction
In this project, a large language model
inference engine is presented. This
inference engine is capable of parsing
GGUF files, tokenizing text, performing
inference on the llama3 architecture and
returning results. This project is still on-
going with work currently focused on
making the inference faster using
hardware acceleration. The full project

description is available at https://gyularabai.com/p_6919-ai-inference-engine.html.

How to Run?
Firstly, download a .gguf file that is in F16 and has the llama3.2 1 billion parameter
architecture. Secondly, download the source-code from either my web-site
(https://gyularabai.com/p_6919-ai-inference-engine.html) or my GitHub
(https://github.com/mrgyularabai/AI-Inference-Engine). Finally, run the LLMInference
project, and load the model you want to use to generate text using the console interface.
The GUI solution was produced using proprietary software, so its source-code is not
available.

Architecture

Model Construction
The model is constructed by first extracting the correct weights from the GGUF file, and
then, constructing the model architecture from OzAIArchComp-s.

GGUF File Parsing

This involves first reading in the correct meta-data entries. Then, the headers for each
tensor which contain the tensor’s properties (dimensions, quantization etc.) are read.
Finally, the tensors are identified and loaded into RAM.

Model Architecture

Next, a series of OzAIArchComp-s are chained together. These each contain either sub-
components or calls to the ExecutionManager to do fundamental vector operations such

https://gyularabai.com/p_6919-ai-inference-engine.html
https://gyularabai.com/p_6919-ai-inference-engine.html
https://github.com/mrgyularabai/AI-Inference-Engine

Inference Engine by Gyula Rábai

as vector addition or matrix multiplication (all tensor operations are broken down into
vector and matrix operations). Together these architecture components form the
architecture.

All of them have hyper-parameters and individual instance parameter, which are
populated during the model construction phase.

Inference

Tokenization

First, the text is inputted into the model’s tokenizer. This uses a novel approach, which
approximates the true output token sequence instead of calculating it from merges. The
approach is faster than many other implementations and is detailed further in this paper
I wrote (https://gyularabai.com/p_9128-fast-inference-time-tokenization-through-
approximating-bpe.html).

Embedding

This is a simple look up into the embedding matrix which is stored as a list of OzAIVector-
s.

Other Architecture Components

It should serve as no surprise that an RMS Norm, followed by self-attention, followed by
a residual connection, followed by a gated linear unit, followed by the next layer is
repeated 16 times. Instead of detailing the architecture specifics, I will focus on a few
unique aspects of my implementation. Firstly, all operations are performed on vectors
not tensors. This mean that self-attention was broken down into groups, then heads, and
finally the score calculations were all done in lower-and-lower-level architecture
components instead of a few monolithic einsum calls to PyTorch.

Another interesting aspect of the implementation is that the same memory locations are
reused, because no gradients have to be calculated and it would be wasteful to
constantly reallocate MBs of memory.

Execution Manager

Finally, the way most vector calculations are done is they are given to the execution
manager, which distributes all the operations amongst multiple executors running on
different threads. The main reason this does not increase the performance drastically is
because the architecture components are not assigning enough tasks at once for the
parallelism to work. This is currently being worked on.

https://gyularabai.com/p_9128-fast-inference-time-tokenization-through-approximating-bpe.html
https://gyularabai.com/p_9128-fast-inference-time-tokenization-through-approximating-bpe.html

Inference Engine by Gyula Rábai

Motivation
The main motivation for this project was that I had been working on a similar project
before large language modelling gained so much focus. I had a program where one would
define a template for an article and define synonyms for different words or phrases. This
program aimed at, someday, being able to generate text. Nonetheless, ChatGPT beat me
to it. To understand how this novel technology works and make it more efficient, I decided
to build my own inference engine.

Development
Unfortunately, the development journey cannot be fully captured as visually as it can for
a game engine or a CPU design. References to currently existing files within the project
will be made to illustrate the development process or changes made within each file.
However, this project was not as strictly version controlled as the others.

My first attempt at making an engine that is capable of running neural networks was the
neural network simulation on this GitHub (https://github.com/mrgyularabai/Neural-
Network-Simulator). The first thing I did was I transferred this code into a separate project
with the linear algebra library and got to work writing the parser for the GGUF file format
(the file format of my choice, because it contained all the data in one file).

This work heavily involved analysing code from llama.cpp to understand the structure of
the file format. Eventually, a representation of the file formed, but I encountered the
problem of there already being at least twenty data-types for tensors form 8-bit K-mean
quantization to brain-floats. I, therefore, made my a class to store all these different types
of numbers. This attempt yielded the OzAINum class and all its inheritors. Here the
properties for the different quantization types could be retrieved for each class, and each
class could store its given data-type. Two functions necessarily implemented for all the
OzAINum-s were casting to float32 and returning a byte array.

This was because my initial idea was to not implement all these different data types and
to just cast them to a high precision data-type (float32) assuming no losses would be
made. I also rewrote my linear algebra classes to store the data using the OzAINum
classes, and each data-type had its own vector type.

The next thing I went on to create was the tokenizer. Implementing the trivial solution of
remerging all the tokens in the text to get the desired output sequence was too slow, so I
devised a new approach to BPE tokenization as detailed in the relevant previous section.

Afterwards, when I started implementing the architecture, I realized that each vector type
would have to be able to operate with other data-types, and this was not going to be
something I could implement in a reasonable time frame. Therefore, I abstracted the
operations out away from the Vector classes into executor classes.

https://github.com/mrgyularabai/Neural-Network-Simulator
https://github.com/mrgyularabai/Neural-Network-Simulator

Inference Engine by Gyula Rábai

Anticipating the need for multithreading, I also made an execution manager class. This
having happened, I removed the data storage from being done in an OzAINum for the
vectors, and devised the current approach.

From here on, I built the architecture as detailed in the previous sections, however I
encountered problems, when I first tried to run the model. The first problem was that the
model simply could not execute without multithreading. It would take about an hour for
one token to be generated. Therefore, before I could even test the architecture, I had to
implement multi-threading.

The next error was that most vectors were slightly off from what they were supposed to
be (+/- 0.4), when it came to unembedding. It turned out that casting everything to float32
introduced imprecision compared to what the model was trained on, which meant that it
could only generate text if the same or a lower-precision data type is used (surprisingly).
This meant I had to reimplement all the operations to take place in float16 (or float32
depending on what was used for the model.)

Last year, the first token was generated. Since, then I have been developing an approach
where instead of each architecture component executing the components sequentially,
the components build a compute graph of atomic vector operations, which can be
executed with much greater parallelism.

Conclusion
Overall, this inference engine is still an on-going project with much more to learn still.
However, along the way, I have gathered all forms of valuable skills such as understanding
tensor operations and learning about multi-variate calculus. To help contribute to my
community, I have also shared these skills with others in the forms of presentations and
lectures. In the future, I hope to make the engine as performant as solutions like PyTorch,
and learn even more along the way.

