
8-Bit Logisim CPU by Gyula Rábai

8-Bit Logisim CPU

Introduction
In this project, an 8-bit CPU was designed in
the digital circuit simulator called Logisim.
The CPU was built from logic-gates upwards
and has its own instruction set and assembler.
It currently also has a byte-code program
loaded into its ROM, which adds the numbers
at the 1st and 2nd memory addresses in RAM,
displays the result into the 3rd memory
address and then demonstrates branching by
writing FF into the 4th address if the resulting

sum is odd and 00 if it is even. The full project description is available at
https://gyularabai.com/cpu.

How to Run?
The first step is to download and set up Logisim (https://www.cburch.com/logisim/). The
next step is to download the appropriate files from either my website
(gyularabai.com/cpu) or the GitHub (https://github.com/mrgyularabai/Logisim-CPU-
8Bit), which should at minimum be the .circ file. Finally, open the file with Logisim, reset
the memory (with the reset pin), enter the inputs into RAM and enable the clock ctrl + K.

Architecture

CPU
The CPU consists of three main parts: the ALU, the data path, and the control unit.

ALU

The arithmetic logic unit accepts two 8-bit buses
and performs all operations on them
(Addition/Subtraction, Shift Left, Shift Right,
Arithmetic Shift Right, Cycle Left, Cycle Right, AND,
OR, NOT, XOR), and a multiplexer selects which
operation should be the output. It also updates the
zero, carry, and negative registers if it performs a
comparison operation.

https://gyularabai.com/cpu
https://www.cburch.com/logisim/
https://github.com/mrgyularabai/Logisim-CPU-8Bit
https://github.com/mrgyularabai/Logisim-CPU-8Bit

8-Bit Logisim CPU by Gyula Rábai

Data Path

The data path contains 8 registers. Register 0 is the
accumulator where all the ALU operations’ results are
saved, and it is hardwired to be an operand of the ALU.
Registers 1 through 5 are general purpose registers.
Register 6 is the memory address register, which means
load, store, and branch operations use this register when a
memory address is needed as an operand. Finally, the
program counter is register 7, which increments each
clock cycle (given that the operation currently executed
does not disable that). All these registers are connected to
one central bus and whether they accept input from or
write to that bus is determined by demultiplexers and a

series of tri-state buffers.

Control Unit

The control unit contains the current instruction
register and accepts all the input and output pins in the
entire CPU. It connects them or writes to them
according to which operation is in the CIR. It also
contains a few 1-bit registers to extend the duration of
instructions like load or branching whilst the data is
loaded or the next memory address is found.

Assembler and Instruction Set
The assembler fills in the correct fields in each byte (representing one instruction) based
on what instruction is provided in human readable format. It then displays the HEX code
that has to be entered into ROM.

The instruction set itself uses the first bit to indicate whether the operation is handled by
the ALU or not and then at maximum 3 bits are reserved for one register as an operand (or
6 for two operands uniquely in the case of mov). The CMD.txt provides a more detailed
description of the instruction set.

Test Program
Here is the test program roughly translated into its equivalent in C:

int main()

{

 //inputs may vary

 char a = 1;

 char b = 2;

8-Bit Logisim CPU by Gyula Rábai

char c = a + b;

if (c % 2 == 0)

return 0;

else

 return 256;

}

Motivation
I undertook this project to understand the inner workings of the CPU. I felt my knowledge
was incomplete in this field despite it having been taught in the GCSE Compute Science
curriculum. Even after taking the A-Level early, I was still not satisfied, and this is when I
encountered drSigPro’s “8 bit Computer using Logisim” video. I was inspired to see
whether I could construct something similar myself. However, I wanted my CPU to be
more complex, supporting more operations. Therefore, I set off using the same software,
but a different design. (Note my design itself takes little to no inspiration from the video
other than the same choice of simulation software.)

Development
I started by developing the ALU of the CPU, not
knowing much about the control aspect
initially. I created a full adder and then instantly
created an 8-bit adder by chaining 8 of them
together. However, I did not consider the
placement of pins and wiring very well, so it
turned out to look a bit convoluted (but still
functional). I further fumbled pin placement
when I made a 16-bit adder for the a 16-bit PC,
which led to very interesting connections to
splitters.

Next, feeling confident, I targeted adding other
operations. However, most of them did not
require complex circuitry. Examples include
shifts, which could be solved with splitters,
and 8-bit wide logic gates that were already

implemented into Logisim. To counter the mess that I caused earlier with the wires, I over-
compensated in the other direction by making a separate module to contain everything
in the ALU. This led to a very inefficient design (compare to the design in the Architecture
section). The main faults were that I negated both inputs instead of reusing the addition
circuitiry. I had also yet to learn of the multiplexer, which meant counteless attempts to

8-Bit Logisim CPU by Gyula Rábai

use mutually exclusive tri-state buffers instead. However, worst of all, I ckeced whether
any of the given operations would
overflow instead of just for the
addition operation as is required for
comparisons.

Next, I designed the data path,
which included 4 registers capable
of being inputs for the ALU
alongside the acc. The rest of the
registers were grouped into pairs

where the MAR was r4 and r5, and the PC was r6 and r7, both of which would act a 16-bit
memory addresses for memory operations. Nonetheless, my inexperience led me to
group the PC and CIR into one module, believing they would often be related by one
operation or another.

Finally, in the first version
of the CPU, I did not yet
consider the control unit
its own unit (I thought
that it would be nigh on
impossible to construct a module which comprehensively has access to all the
connections required in the CPU). This led to one monolithic circuit containing all the

circuitry, but roughly speaking, the
right side could be considered the
control unit, as is shown to the left.

The project did have unique features,
however, such as being able to
access 16-bit memory, and it could
feed the CIR from both the RAM and
ROM (there was one instruction to
switch between the two), thus

realizing the von Neuman architecture.

8-Bit Logisim CPU by Gyula Rábai

Eventually, however, I grew too ambitious, trying to upgrade it to a hyper-threaded 16-bit
architecture. This failed on the wiring, because the datapath grew too complex without
properly breaking the system down into
submodules.

When I wanted to present what I had
learnt in Computing Society, I did not
want to present the CPU I had created
above due to its convoluted and
innefficient design. Therefore, I created
the architecture presented in the
earilier sections, which kept to a fully 8-bit design for simplicity, fully utlized the power of
plexers and most importantly followed an instruction set I designed prior to creating the
CPU. This meant I could get a both working and presentable CPU in the end.

Conclusion
Overall, this project resulted in two designs for an 8-bit CPU, and was a journey of
improvement. I learnt how to organize circuits and connections in ways, which were both
functional and easy to understand. However, most of all, I learnt how digital signals can
form into a machine capable of general computation, and it all starts by assigning a
meaning to a one or a zero.

